Obsprocessors
BaseProcessor
BaseProcessor ()
Initialize self. See help(type(self)) for accurate signature.
FlattenTimeDimNumpy
FlattenTimeDimNumpy (allow_2d:Optional[bool]=False, batch_dim_included:Optional[bool]=True)
Preprocessor to flatten the time and feature dimension of the input. Used, e.g., to convert time-series data for models that cannot process a time dimension such as MLPs or Regression models.
Type | Default | Details | |
---|---|---|---|
allow_2d | Optional | False | |
batch_dim_included | Optional | True |
FlattenTimeDimNumpy.check_input
FlattenTimeDimNumpy.check_input (input:numpy.ndarray)
Check that the input is a Numpy array with the correct shape.
Type | Details | |
---|---|---|
input | ndarray |
FlattenTimeDimNumpy.__call__
FlattenTimeDimNumpy.__call__ (input:numpy.ndarray)
Process the input array by keeping the batch dimension and flattening the time and feature dimensions.
ConvertDictSpace
ConvertDictSpace (keep_time_dim:Optional[bool]=False, hybrid_space_params:Optional[Dict]=None)
*A utility class to process a dictionary of numpy arrays, with options to preserve or flatten the time dimension.
Note, this class is only used to preprocess output from the environment without batch dimension.*
Type | Default | Details | |
---|---|---|---|
keep_time_dim | Optional | False | If time timension should be flattened as well. |
hybrid_space_params | Optional | None | dict with keys “time” that is a list of observation keys that should keep the time dimension. |
AddParamsToFeaturesLEGACY
AddParamsToFeaturesLEGACY (environment:object, keep_time_dim:Optional[bool]=False, hybrid:Optional[bool]=False, receive_batch_dim:Optional[bool]=False)
A utility class to process a dictionary of numpy arrays, with options to preserve or flatten the time dimension. # TODO: Currently is mixes too many cases like batched input, hybrid input etc. Seperate into more specific obsprocessors.
Type | Default | Details | |
---|---|---|---|
environment | object | The environment object, needed to check if val or train mode, | |
keep_time_dim | Optional | False | If time timension should be flattened as well. |
hybrid | Optional | False | If the param dim should be added as separate vector or concatenated to the features. |
receive_batch_dim | Optional | False | If the input contains a batch dimension. |
AddParamsToFeatures
AddParamsToFeatures (environment:object, keep_time_dim:Optional[bool]=False, receive_batch_dim:Optional[bool]=False)
A utility class to process a dictionary of numpy arrays (from dict space), with options to preserve or flatten the time dimension. It always adds the parameters to the appropriate dimension. For composite spaces (partially time-series, partially not), use the separate AddParamsToFeaturesComposite class.
Type | Default | Details | |
---|---|---|---|
environment | object | The environment object, needed to check if val or train mode, | |
keep_time_dim | Optional | False | If time timension should be flattened as well. |
receive_batch_dim | Optional | False | If the input contains a batch dimension. |