Inventory utils
OrderPipeline
OrderPipeline (num_units:int, lead_time_mean:Union[ddopai.utils.Parameter ,numpy.ndarray,List,int,float], lead_time_stochasticity:Li teral['fixed','gamma','normal_absolute','normal_relative'] ='fixed', lead_time_variance:Union[ddopai.utils.Parameter, numpy.ndarray,List,int,float,NoneType]=None, max_lead_time:list[object]|None=None, min_lead_time:list[object]|None=1)
Class to handle the order pipeline in the inventory environments. It is used to keep track of the orders that are placed. It can account for fixed and variable lead times.
Type | Default | Details | |
---|---|---|---|
num_units | int | number of units (SKUs) | |
lead_time_mean | Union | mean lead time | |
lead_time_stochasticity | Literal | fixed | “fixed”, “gamma”, “normal_absolute”, “normal_relative” |
lead_time_variance | Union | None | variance of the lead time |
max_lead_time | list[object] | None | None | maximum lead time in case of stochastic lead times |
min_lead_time | list[object] | None | 1 | minimum lead time in case of stochastic lead times |
Returns | None |
OrderPipeline.get_pipeline
OrderPipeline.get_pipeline ()
Get the current pipeline
OrderPipeline.reset
OrderPipeline.reset ()
Reset the pipeline
OrderPipeline.step
OrderPipeline.step (orders:numpy.ndarray)
Add orders to the pipeline and return the orders that are arriving
OrderPipeline.get_orders_arriving
OrderPipeline.get_orders_arriving ()
Get the orders that are arriving in the current period
OrderPipeline.draw_lead_times
OrderPipeline.draw_lead_times ()
Draw lead times for the orders
OrderPipeline.check_stochasticity
OrderPipeline.check_stochasticity (max_lead_time)
Check that params for stochastic lead times are set correctly
OrderPipeline.check_max_min_mean_lt
OrderPipeline.check_max_min_mean_lt ()
OrderPipeline.set_param
OrderPipeline.set_param (name:str, input:Union[ddopai.utils.Parameter,int,float,num py.ndarray,List], shape:tuple=(1,), new:bool=False)
Set a parameter for the environment. It converts scalar values to numpy arrays and ensures that environment parameters are either of the Parameter class of Numpy arrays. If new is set to True, the function will create a new parameter or update an existing one otherwise. If new is set to False, the function will raise an error if the parameter does not exist.
Type | Default | Details | |
---|---|---|---|
name | str | name of the parameter (will become the attribute name) | |
input | Union | input value of the parameter | |
shape | tuple | (1,) | shape of the parameter |
new | bool | False | whether to create a new parameter or update an existing one |
Returns | None |
OrderPipeline.shape
OrderPipeline.shape ()
Get the shape of the pipeline