.. _api_reference: ============= API Reference ============= This is the class and function reference of ddop. .. _newsvendor_ref: :mod:`ddop.newsvendor`: Newsvendor decision making =================================================== The ``ddop.newsvendor`` module contains different newsvendor approaches for decision making. .. automodule:: ddop.newsvendor :no-members: :no-inherited-members: .. currentmodule:: ddop.newsvendor Sample Average Approximation (SAA) ----------------------------------- .. autosummary:: :toctree: modules/auto_generated/ :template: class.rst SampleAverageApproximationNewsvendor Weighted SAA (wSAA) ---------------------- .. autosummary:: :toctree: modules/auto_generated/ :template: class.rst DecisionTreeWeightedNewsvendor RandomForestWeightedNewsvendor KNeighborsWeightedNewsvendor GaussianWeightedNewsvendor Empirical Risk Minimization (ERM) --------------------------------- .. autosummary:: :toctree: modules/auto_generated/ :template: class.rst LinearRegressionNewsvendor DeepLearningNewsvendor ------------------------------------------------------------ .. _metrics_ref: :mod:`ddop.metrics`: Evaluation metrics ======================================== The ``ddop.metrics`` module includes different performance metrics that can be used for model selection and evaluation. .. automodule:: ddop.metrics :no-members: :no-inherited-members: .. currentmodule:: ddop.metrics .. autosummary:: :toctree: modules/auto_generated/ total_costs average_costs prescriptiveness_score All performance metrics can also be used with scikit-learn model selection tools. However, therefore a proper scoring object has to be generated by using the make_scorer function. .. autosummary:: :toctree: modules/auto_generated/ make_scorer Moreover, the module contains a function to calculate the pairwise costs. .. autosummary:: :toctree: modules/auto_generated/ pairwise_costs ------------------------------------------------------------ .. _datasets_ref: :mod:`ddop.datasets`: Datasets ============================== ``ddop`` comes with a few default datasets that can be loaded using the ``ddop.datasets`` module. .. automodule:: ddop.datasets :no-members: :no-inherited-members: Loaders ----------- .. currentmodule:: ddop.datasets .. autosummary:: :toctree: modules/auto_generated/ load_yaz load_bakery load_SID These datasets are useful to quickly illustrate the behavior of the various algorithms implemented in ddop.